This article was downloaded by: [University of Haifa Library]

On: 13 August 2012, At: 20:28 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl20

Synthesis, Structure, And Physical Properties Of An Electron Acceptor: Trifluoromethyl-TCNQ (CF 3 TCNQ)

Hideo Ikegami ^a , Chin-Hong Chong ^a , Hideki Yamochi ^a & Gunzi Saito ^a

^a Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan

Version of record first published: 18 Oct 2010

To cite this article: Hideo Ikegami, Chin-Hong Chong, Hideki Yamochi & Gunzi Saito (2002): Synthesis, Structure, And Physical Properties Of An Electron Acceptor: Trifluoromethyl-TCNQ (CF 3 TCNQ), Molecular Crystals and Liquid Crystals, 382:1, 21-35

To link to this article: http://dx.doi.org/10.1080/713738752

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., Vol. 382, pp. 21–35 Copyright © 2002 Taylor & Francis 1058-725X/02 \$12.00 + .00

DOI: 10.1080/10587250290120242

SYNTHESIS, STRUCTURE, AND PHYSICAL PROPERTIES OF AN ELECTRON ACCEPTOR: TRIFLUOROMETHYL-TCNQ (CF₃TCNQ)

Hideo Ikegami, Chin-Hong Chong, Hideki Yamochi, and Gunzi Saito Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan

An electron acceptor molecule of tetracyanoquinodimethane (TCNQ) derivative; trifluoromethyl-TCNQ (CF₃TCNQ) was synthesized and its crystal structure was determined. CF₃TCNQ was found to be a strong electron acceptor comparable to 2,5-difluoro-TCNQ. The adiabatic electron affinity and molecular on-site Coulomb energy of CF₃TCNQ were estimated to be 2.96–3.05 eV and 4.74 eV, respectively. The acidity of dihydro-CF₃TCNQ in N,N-dimethylformamide/ H_2O was estimated to be $pK_1 = 5.30$ and $pK_2 = 8.20$. The molecular and crystal structures and molecular orbitals of CF₃TCNQ are described.

Keywords: trifluoromethyl-TCNQ; electron acceptor; preparation; structure; molecular orbital; acidity

INTRODUCTION

Tetracyanoquinodimethane (TCNQ) and its derivatives have received unabated interest as electron acceptor molecules in the field of organic conductors of the charge transfer (CT) type. These include organic metals

Received 26 February 2001; accepted 22 March 2001.

This work was in part supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan, a Grant from CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation (JST), a fund from "Research for Future" from Japan Society for Promotion of Science, and a fund from the International Joint Research Grant Program of the New Energy and Industrial Technology Development Organization (NEDO).

Address correspondence to Gunzi Saito, Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. E-mail: saito@kuchem.kyoto-u.ac.jp

(e.g. TTF·TCNQ)[1]*, metallic Langmuir-Blodgett films (BEDO-TTF(BO) ·decyl-TCNQ, BO·(MeO)₂TCNQ) [2], neutral-ionic phase transition system (3,3',5,5'-tetramethylbenzidine·TCNQ) [3], organic semiconductor condenser (N-alkyl-isoquinolinium·TCNQ) [4], switching and memory system (Cu·TCNQ [5a], TTeC₁-TTF·TCNQ [5b]), nonlinear optical materials (perylene·TCNQ [6], zwitterionic one [7]), and molecular rectifiers [8].

For tuning both the Fermi level and density of states in a metal, it is crucial to obtain a variety of TCNQ derivatives which vary little in size and cover a wide range of electron-accepting ability. Also of importance is how the asymmetry of the component molecule affects the electrical and magnetic properties of the CT complexes. In order to search for highly conducting Langmuir-Blodgett films of CT type it is of interest to use a TCNQ derivative having a short side chain. With these properties in mind we report here the synthesis, structure and physical properties of a TCNQ derivative, trifluoromethyl-TCNQ (CF₃TCNQ).

The main molecules in this paper are presented in Scheme 1.

EXPERIMENTAL

Measurement

The melting points were not corrected. Cyclic voltammetric measurements were performed in 0.1 M solutions of tetrabutylammonium tetrafluoroborate (TBA·BF₄) in acetonitrile (MeCN) with Pt electrodes vs. saturated calomel electrode (SCE) or Ag/AgCl at 10-100 mV sec⁻¹ and 20-22°C. The optical measurements were carried out on a Perkin-Elmer 1600 Series FT-IR (resolution 4 cm⁻¹) for the IR and near-IR (NIR) regions (400-7800 cm⁻¹) in KBr and on a SHIMADZU UV-3100 spectrometer for the UV-VIS-NIR region (3800–42000 cm⁻¹) in KBr or in solution. The mass spectra (MS) were measured by the EI method on a Jeol AMII spectrometer. The instrument used for pH measurements was a Toa HM-5ES glass electrode. The pH meter was corrected using tetraborate (pH = 9.18 at 25°C), phosphate (pH = 6.86 at 25°C), and phthalate (pH = 4.01 at 25°C) standard solutions. The subsequent titrations were carried out with the addition of standard sodium hydroxide solution (0.1 M). All titrations were run at $22 \pm 1^{\circ}$ C, and the ion strengths fixed to a constant value (0.1 M) using sodium tetrafluoroborate. The intensity data of the structural analysis were collected on an automatic four circle diffractometer with a

^{*}Chemicals in text: TCNQ, tetracyanoquinodimethane; TTF, tetrathiafulvalene; TMTTF, tetramethyl-TTF; BEDO-TTF, bisethylenedioxy-TTF; TTeC $_1$ -TTF, tetrakismethyltelluro-TTF; EOET-TTF, ethylenedithioethylenedioxy-TTF; BEDT-TTF, bisethylenedithio-TTF; BEDO-DBTTF, bisethylenedioxy-dibenzoTTF; HMTTeF, hexamethylenetetratellurafulvalene.

SCHEME 1 Chemical structures of compounds discussed in the text.

monochromated MoK_{α} radiation at room temperature. The structures were determined by direct methods. The refinements of the structures were performed by full matrix least squares method. The semiempirical molecular orbital calculations were performed using MOPAC 97 with the AM1 parameterization.

Synthesis

The synthetic procedure of CF₃TCNQ is depicted in Figure 1. The diiodo derivative ($\underline{2}$) of 1,4-dibromo-2-trifluoromethylbenzene ($\underline{1}$) was prepared using the method of Suzuki et al. [9]. A mixture of $\underline{1}$ (25.0 g, 82.9 mmol), KI (46.5 g, 280 mmol), and CuI (16.1 g, 84.4 mmol) in 50 mL of hexamethylphosphoramide was heated to 145°C and stirred under nitrogen for 19 h and then cooled to room temperature. After adding 360 mL of 1 N HCl, the reaction mixture was extracted with diethylether (ca. $100 \, \text{mL} \times 4$). The organic layer was concentrated to ca. 20 mL then cooled in ice to precipitate 1,4-diiodo-2-trifluoromethylbenzene ($\underline{2}$), which was collected on a glass filter and dried (white powder, 28.8 g, 72.4 mmol yield 88.2%, m.p. $100.9-101.6^{\circ}\text{C}$).

FIGURE 1 Synthetic scheme of CF₃TCNQ.

2 was converted to 2-trifluoromethyl-1,4-benzenedimalononitrile (CF₃-H₂TCNQ, 3) using the method of Uno et al. [10] and oxidized to CF₃TCNQ (4) by adding bromine/water [11]. A mixture of NaH (40% oil 16.9 g, 423 mmol), malononitrile $(19.0\,\mathrm{g},$ 287 mmol), bis(triphenylphosphonium) $PdCl_2$ [$Pd(PPh_3)_2Cl_2$] (2.01 g, 2.87 mmol) and 2 (28.6 g, 72.0 mmol) in 320 mL of dry 1,2-dimethoxyethane was refluxed for 17.7 h under nitrogen and cooled to room temperature. After adding 240 mL of 1 N HCl, the supernatant fluid was discarded by decantation. The brown oily product (3) was washed with water a few times and suspended by stirring it in 80 mL of water containing 4 mL of bromine (76.9 mmol). The yellowish brown solid of CF₃TCNQ (4) was collected on a glass filter. The crude product was dried under vacuum and recrystallized from 1080 mL of benzene/diethylether (5:1) twice to yield a yellowish orange powder (5.33 g, yield 24.2%), which was further purified by a conventional sublimation then by a gradient sublimation (0.25 Torr, 170°C) to yield orange granules (4) (2.42 g, yield 11.0%, m.p. 185.0–185.2°C; MS (70 eV) m/e 272 $(M^+, 100), 273 (M^++1, 17.4); {}^{1}H NMR(CDCl_3) \delta 7.94 (1H, s), 7.82 (1H, d),$ 7.61 (1H, d); IR(KBr) 2223 cm^{-1} (C\(\equiv N\)); UV-VIS (MeCN) 375 nm (sh, \(\epsilon\) 3.6×10^3), 394 nm ($\epsilon 5.42 \times 10^3$). Anal. Calcd for $C_{13}H_3N_4F_3$. C, 57.37; H, 1.11; N, 20.58; F, 20.94; Found C, 57.51; H, 1.40; N, 20.88; F, 21.04%. The pK_a values were measured on purified CF₃-H₂TCNQ.

ELECTRON-ACCEPTING ABILITY AND ON-SITE COULOMB REPULSIVE ENERGY OF CF3TCNQ

Redox Potential

The cyclic voltammogram displays two reversible one-electron redox waves. Table 1 summarizes the first ($E^1_{1/2}$ for the process of $A+e^-\rightleftarrows A^{1-\bullet}$) and second ($E^2_{1/2}$ for $A^{1-\bullet}+e^-\rightleftarrows A^{2-}$) redox potentials (vs. SCE, MeCN) and the difference between them (ΔE) for several related TCNQs. The $E^1_{1/2}$ value of CF₃TCNQ is a little higher than that of F₂TCNQ, suggesting that CF₃TCNQ is a considerably strong electron acceptor. As shown in

• • • • • • • • • • • • • • • • • • • •					
TCNQs	Cyclic voltammetry (V) ^a			$h{ u_{ m CT}}^{ m b}$	
	$\overline{E^1}_{1/2}$	$E^2_{1/2}$	ΔE	pyrene $(\times 10^3 \text{ cm}^{-1})$	Hammett σ^{c}
F ₄ TCNQ	0.60	0.05	0.55	10.5	0.80
CF_3TCNQ	0.44	-0.14	0.58	11.6	0.49
F_2TCNQ	0.41	-0.13	0.54	11.6	0.40
FTCNQ	0.32	-0.24	0.56	12.3	0.20
TCNQ	0.22	-0.34	0.56	12.8	0
MeTCNQ	0.19	-0.33	0.52	13.4	-0.12
Me_2TCNQ	0.15	-0.34	0.49	13.7	-0.24
Et_2TCNQ	0.15	-0.34	0.49	13.9	-0.22
$(MeO)_2TCNQ$	0.05	-0.44	0.49	14.7	-0.54
$(EtO)_2TCNQ$	0.01	-0.46	0.47	15.3	-0.48

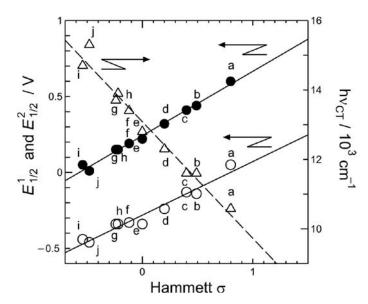
TABLE 1 Redox Potentials, Charge Transfer Transition Energies, and Hammett σ Values of some TCNQ Derivatives

^bPyrene CT complex in CHCl₃ solution at room temperature. Hexamethylbenzene and anthracene CT complexes of CF₃TCNQ exhibit CT bands at 15.3 and 11.2×10^3 cm⁻¹, respectively.

Figure 2, the first (or second) redox potential of CF₃TCNQ in MeCN is on the linear line between the $E_{1/2}^1$ (or $E_{1/2}^2$) and Hammett σ values [12], giving the following equations (γ : correlation coefficient):

$$E_{1/2}^1 = 0.424\sigma + 0.242 \ (\gamma = 0.995),$$
 (1)

$$E_{1/2}^2 = 0.353\sigma - 0.281 \ (\gamma = 0.977).$$
 (2)


The estimation of electron affinity (E_A) based on the redox potentials is usually done by using an empirical relation between the experimentally observed E_A s and redox potentials [13]. Taking into account the large ambiguity caused by both the lack of adequate numbers of experimentally determined E_A values and the significant difference of the magnitude of solvation energy included in the redox potentials from system to system [14], the adiabatic E_A value of CF₃TCNQ is estimated as $2.96 \pm 0.10 \, \mathrm{eV}$ using the empirical relation. Equation (3), as proposed in Saito et al. [15]:

$$E_A = 0.858 \ E_{1/2}^1 \ (\text{vs. SCE in MeCN}) + 2.59.$$
 (3)

The second redox potentials of TCNQs in Table 1 correlate linearly with the first ones with the slope less than unity as expressed by Equation (4):

 $[^]aE^1_{1/2}$ and $E^2_{1/2}$ are the average values of the reduction and oxidation peak-potentials for the processes $A^0 \rightleftharpoons A^{-\bullet}$ and $A^{-\bullet} \rightleftharpoons A^{2-}$, respectively, Pt electrodes, CH₃CN, 0.1 M TBA \bullet BF₄, 20–22°C, 10–20 mV s⁻¹. $E^1_{1/2}$ and $E^2_{1/2}$ of CF₃TCNQ vs. Ag/AgCl are 0.37 and -0.14 V, respectively.

^c See all references listed in [13].

FIGURE 2 Plots of half-wave redox potentials ($E_{1/2}^1$ (closed circle) and $E_{1/2}^2$ (open circle) vs. SCE) of TCNQs and charge transfer transition energies (triangle) of complexes of TCNQs with pyrene ($h\nu_{\rm CT}$ (pyrene·A)) against the Hammett σ values [12]. Solid and dashed lines are the results of least squares fit. The letters indicate TCNQ derivatives RTCNQ (R=F₄(a), CF₃(b), F₂(c), F(d), H(e), Me(f), Me₂(g), Et₂(h), (MeO)₂(i), (EtO)₂(j)).

$$E_{1/2}^2 = 0.834 \, E_{1/2}^1 - 0.479 \tag{4}$$

The difference of the first and second redox potentials, $\Delta E \ (= E_{1/2}^1 - E_{1/2}^2)$, decreases with the decreasing acceptor ability of the TCNQs as seen in Table 1. From the linearity, the molecular on-site Coulomb energy U_0 is evaluated as $4.74 \, \text{eV}$ using an empirical equation:

$$U_0(\text{TCNQs}) = 0.17E_{1/2}^1 \text{ (vs. SCE in MeCN)} + 4.67,$$
 (5)

which is derived from a similar procedure to that described in Akutagawa and Saito [16a]. The estimated U_0 value of CF_3TCNQ is not much different from those of TCNQ and F_4TCNQ , calculated using the redox potential data in MeCN ($U_0 = 4.70 - 4.77 \text{ eV}$) [16a].

Charge Transfer Absorption

The electron-accepting ability of an acceptor molecule is appropriately estimated by the CT absorption energy of a weak CT complex in an inert

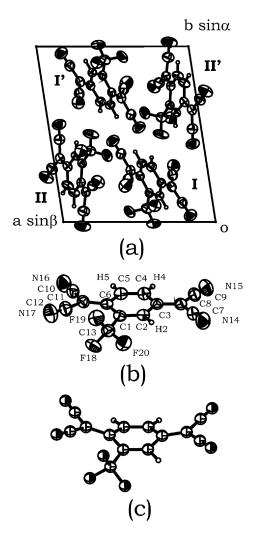
solvent. The CF₃TCNQ molecule gave CT absorption energies ($hv_{\rm CT}$) not much different from those of the F₂TCNQ molecule. A plot of the $hv_{\rm CT}({\rm D\cdot CF_3}T{\rm CNQ},\,{\rm D}={\rm pyrene},\,{\rm hexamethylbenzene},\,{\rm anthracene})$ values in Table 1 against the $hv_{\rm CT}({\rm D\cdot TNB},\,{\rm TNB}=s\text{-trinitrobenzene})$ values gave a straight line, as has been observed for the case of TCNQ, p-chloranil, and C₆₀ molecules [15]. By the same procedure as described in Saito et al. [15] the difference of the CT absorption energies ($\Delta hv_{\rm CT}-hv_{\rm CT}({\rm D\cdot TNB})-hv_{\rm CT}$ (D·CF₃TCNQ)) was found to be $10.5\times10^3\,{\rm cm}^{-1}$. An empirical relation: Equation 6 [15] is utilized to give the $E_A=3.05\pm0.10\,{\rm eV}$ of CF₃TCNQ, which is in good agreement with that estimated from the redox potential. As shown in Figure 2, the $hv_{\rm CT}({\rm pyrene\cdot A})$ values in Table 1 are linearly related to the Hammett σ values:

$$E_A \text{ (in eV)} = 0.108 \,\Delta h v_{\text{CT}} \text{(TNB vs. A in } 10^3 \,\text{cm}^{-1}) + 1.92,$$
 (6)

PROTON-DONATING ABILITY (ACIDITY) OF CF₃-H₂TCNQ

The dissociation constants of dihydro-CF₃TCNQ (CF₃-H₂TCNQ) for the processes expressed by Equations (7) and (8) were measured to be $pK_1 = 5.30$ and $pK_2 = 8.20$ in a mixed solution of DMF/H₂O (7/3):

$$CF_3 - H_2TCNQ \stackrel{K_1}{\rightleftharpoons} CF_3 - HTCNQ^{1-} + H^+,$$
 (7)


$$CF_3$$
-HTCNQ¹⁻ $\stackrel{K_2}{\rightleftharpoons} CF_3$ TCNQ²⁻ + H⁺. (8)

These values are between those of F₄TCNQ (p K_1 = 4.01, p K_2 = 7.20) and TCNQ (7.10, 10.30) [16a]. Fairly good relations both between the pK and Hammett σ values (p K_1 = 6.99–3.16 σ , p K_2 = 10.10–3.17 σ) and between the p K_1 and p K_2 values (p K_2 = p K_1 +3.11) are found to exist using the data of Me₂TCNQ (7.60, 11.30) [16a].

MOLECULAR AND CRYSTAL STRUCTURES AND MOLECULAR ORBITAL CALCULATION OF CF_3TCNQ

Orange granules of CF_3TCNQ crystallize in the triclinic, P1. Two crystallographically independent CF_3TCNQ molecules were found, and their molecular and crystal structures are presented in Figure 3. The lattice and the atomic parameters are summarized in Tables 2 and 3, and some bond lengths and angles are presented in Table 4.

The CF_3 group is ordered at room temperature. The carbon atom of the CF_3 group is not on the nearly planar TCNQ plane but deviates by 0.46 Å and 0.25 Å for CF_3 TCNQ molecules I and II, respectively. As seen from the bond angles, the dicyanomethylene group remote from the CF_3 group is sterically relaxed. On the other hand, the steric hindrance between

FIGURE 3 (a) ORTEP drawing of the crystal structure of CF_3TCNQ projected along the c-axis. The symmetry operations for I and II are (x,y,z), and for I' and II' are (1-x,1-y,1-z). (b) The atomic numbering scheme of the $CF_3TCNQ(I)$, to which we add 20 to obtain the atomic numbers for $CF_3TCNQ(II)$. (c) The molecular shape obtained from the geometry optimization of CF_3TCNQ by a semiempirical molecular orbital calculation.

TABLE 2 Crystal Data, Data Collection, and Reduction Parameters of CF_3TCNQ

	Neutral CF ₃ TCNQ
Formula	$C_{13}H_3N_4F_3$
Formula wt	272.18
Crystal dimension	$0.18 \times 0.43 \times 0.48 \mathrm{mm}^3$
Crystal system	triclinic
Space group	Р 1
a/Å	11.412(4)
b/Å	13.323(4)
c/Å	8.075(4)
lpha/deg	87.86(3)
β /deg	86.93(3)
γ /deg	81.13(3)
V/\mathring{A}^3	1210.7(3)
Z	4
D _{calc} , g/cm ³	1.49
Diffractometer	MAC SCIENCE MXC^{χ}
Radiation	${ m MoK}lpha$
Scan mode	2θ $-\omega$
$2\theta_{ m max}$	55°
No. of intensity meas	4462
Criterion for obsd. reflection	$F_0 > 6\sigma(F_0)$
Reflections used in L.S.	3095
No. of refined parameters	433
R	0.0717

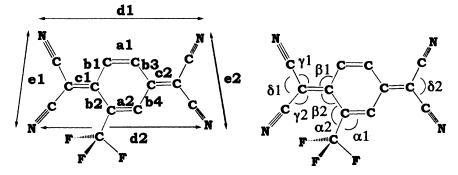
Refinement conditions: Anisotropic temperature factors were adopted to the nonhydrogen atoms. The positional parameters of hydrogen atoms were calculated assuming the $\rm sp^2$ configuration of carbon atoms bonding to it, isotropic temperature factor of $\rm U=0.05~\mbox{Å}^2$, and C-H bond length of 1.00 Å.

dicyanomethylene and the adjacent CF₃ groups is obvious from the distorted bond angles; namely, α_2 (122.8° and 122.4°), β_2 (127.3°, 127.6°), and γ_2 (128.2°, 128.9°) are widened while α_1 (116.7°, 117.2°) and β_1 (117.5°, 116.4°) are narrowed, and furthermore the angle of C₁₁-C₁₂-N₁₇ (see Figure 3b, 174.0°) is less than the other corresponding C-C-N angles (177.2, 177.2, and 179.6°) (Table 4).

It has been known for TCNQ derivatives that the molecular length is elongated along the long molecular axis but shortened along the short molecular axis as the electron acceptor strength increases [17]. This tendency is also noted in ${\rm CF_3TCNQ}$ molecules.

The permanent dipole moments of CF₃TCNQ molecules, which were estimated to be 1.87–1.93 Debye by MOPAC calculation, were cancelled

 ${\bf TABLE~3}$ Atomic Coordinates and Equivalent Isotropic Parameters of ${\rm CF_3TCNQ}$ Molecules


Molecules					
Atom	X	У	z	Beq (\mathring{A}^2)	
C1	0.40670	0.16510	0.37610	3.339870	
C2	0.34170	0.14890	0.51570	3.479370	
C3	0.31680	0.22190	0.64630	3.482000	
C4	0.36500	0.31460	0.62130	3.882040	
C5	0.42590	0.33300	0.47960	3.832040	
C6	0.44930	0.26230	0.34460	3.358300	
C7	0.20040	0.10960	0.80750	4.516330	
C8	0.25270	0.20050	0.78750	3.726760	
C9	0.23440	0.26870	0.92300	4.384740	
C10	0.55280	0.38840	0.19850	4.537390	
C11	0.50680	0.29320	0.20400	3.945210	
C12	0.53240	0.24100	0.05010	5.082190	
C13	0.43780	0.07620	0.26050	4.400530	
N14	0.15840	0.03780	0.82380	6.932410	
N15	0.21890	0.31930	1.03410	6.158630	
N16	0.59240	0.46180	0.18930	6.835030	
N17	0.55580	0.20740	-0.07660	7.064010	
F18	0.55470	0.05850	0.22500	5.626990	
F19	0.38370	0.09190	0.11810	5.700680	
F20	0.40870	-0.00950	0.33010	5.821750	
H2	0.30980	0.08320	0.52880		
H4	0.35510	0.36640	0.70940		
H5	0.45690	0.39970	0.47010		
C21	0.81790	0.33420	-0.15330	3.139850	
C22	0.85180	0.37640	-0.01810	3.263550	
C23	0.91650	0.31650	0.10980	3.584640	
C24	0.93450	0.20860	0.09820	4.192610	
C25	0.90040	0.16630	-0.03630	4.053120	
C26	0.84400	0.22470	-0.17320	3.318820	
C27	0.94210	0.46990	0.25730	4.447900	
C28	0.95760	0.36190	0.24190	3.882040	
C29	1.02090	0.30310	0.36960	4.753200	
C30	0.85570	0.06200	-0.30850	5.200620	
C31	0.82260	0.17000	-0.30880	3.795190	
C32	0.77040	0.20660	-0.46070	4.674250	
C33	0.75040	0.40440	-0.27770	4.174190	
N34	0.92930	0.55530	0.26730	6.666590	
N35	1.06710	0.25430	0.47380	6.650800	
N36	0.87800	-0.02360	-0.31000	8.298360	
N37	0.73210	0.22890	-0.58740	6.479720	
F38	0.64550	0.37890	-0.30540	5.548030	
F39	0.81120	0.40640	-0.42370	5.621730	
F40	0.73020	0.50040	-0.22760	6.563950	
H22	0.83400	0.45150	-0.00380		
H24	0.97340	0.16460	0.18920		
H25	0.91380	0.09070	-0.04540		

Beq =(4/3) Σ $B_{ii}^{\,2}.$ For the atomic numbering, see Figure 3b.

parison of or 310 ng intramolecular deometry					
Distance (Å)	CF ₃ TCNQ (I)	CF ₃ TCNQ (II)	Angle (°)	CF ₃ TCNQ (I)	CF ₃ TCNQ (II)
al	1.341(6)	1.344(8)	$\alpha 1$	116.7(4)	117.2(5)
a2	1.345(7)	1.348(8)	$\alpha 2$	122.8(4)	122.4(5)
b1	1.454(7)	1.449(8)	$\beta 1$	117.5(5)	116.4(5)
b2	1.461(7)	1.456(8)	$\beta 2$	127.3(5)	127.6(5)
b3	1.431(7)	1.426(8)	$\gamma 1$	120.2(5)	120.3(5)
b4	1.448(7)	1.445(8)	$\gamma 2$	128.2(5)	128.9(5)
c1	1.363(8)	1.390(8)	$\delta 1$	111.6(5)	110.9(5)
c2	1.366(7)	1.383(8)	$\delta 2$	116.8(5)	116.0(5)
d1	8.168(7)	8.006(7)			
d2	8.771(7)	8.862(7)			
e1	4.165(7)	4.149(7)			
e2	4.339(7)	4.379(7)			

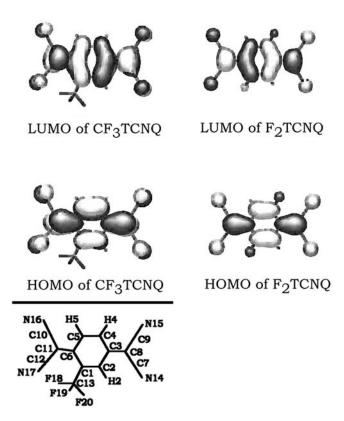
TABLE 4 Bond Lengths, Angles, and Dimension of CF₃TCNQ Molecules. Comparison of CF₃TCNQ Intramolecular Geometry

The notation of each interatomic distance and bond angle is as follows:

out by the presence of the inversion center at the center of the unit cell in the crystal, as shown in Figure 3a.

To understand the effect of the CF_3 group on the acceptor strength of $\mathrm{CF}_3\mathrm{TCNQ}$, molecular orbital calculations were performed. Table 5 summarizes the orbital energies and the atomic orbital (AO) coefficients of the LUMOs for the molecular geometry, determined by the crystal structure analysis, along with those for the optimized geometry of $\mathrm{CF}_3\mathrm{TCNQ}$. Although the optimized configuration shows the concave shape along the molecular long axis (Figure 3c), the absolute values of the AO coefficients obtained, based on three kinds of molecular geometry, are very similar to each other. To simplify the discussion, only the results based on the optimized geometry will be considered hereafter.

The AO coefficients of the fluorine $2p_z$ orbitals of CF_3TCNQ are negligible (Figure 4, left, Table 5). In contrast to that, the fluorine $2p_z$ orbitals of


TABLE 5 Molecular Orbital Energy and Atomic Orbital (AO) Coefficients of the LUMOs of CF_3TCNQ : Only the $2p_z$ AO Coefficients for Nonhydrogen Atoms and those of 1 s Orbital for Hydrogen Atoms are Given

Geometry	CF ₃ TCNQ (I)	CF ₃ TCNQ (II)	Optimized
Energy (eV)	-3.1900	-3.3100	-3.1590
Atom C1	0.2839	-0.2781	-0.2916
C2	-0.3075	0.3058	0.3163
C3	-0.3168	0.3094	0.3203
C4	-0.2255	0.2215	0.2115
C5	0.2615	-0.2524	-0.2458
C6	0.2730	-0.2767	-0.2645
C7	0.0607	-0.0567	-0.0657
C8	0.4599	-0.4600	-0.4370
C9	0.0601	-0.0601	-0.0658
C10	-0.0528	0.0519	0.0540
C11	-0.4238	0.4318	0.3743
C12	-0.0493	0.0499	0.0500
C13	0.0198	-0.0197	-0.0245
N14	-0.1810	0.1786	0.1861
N15	-0.1790	0.1847	0.1864
N16	0.1602	-0.1662	-0.1574
N17	0.1626	-0.1725	-0.1592
F18	0.0114	-0.0130	-0.0022
F19	0.0174	-0.0180	-0.0253
F20	-0.0072	0.0083	0.0027
H2	-0.0050	0.0029	0.0064
H4	0.0038	0.0019	0.0009
Н5	-0.0005	-0.0008	-0.0037

For the numbering scheme of the atoms, see Figure 3b.

 F_2 TCNQ conjugate well with the π -system of TCNQ moiety and show the AO coefficients of 0.10 and 0.13 in absolute values in the LUMO and HOMO, respectively (Figure 4, right). It should be noted that the C-F bonds of F_2 TCNQ are antibonding, indicating that the frontier orbitals of the π -moiety are destabilized by the conjugation with the fluorine atoms from the point of the orbital interaction. This situation is similar to that of the theoretical explanation of the "perfluoro effect" in the photoelectron spectroscopy: the substitution of fluorine for hydrogen in a planar molecule has much larger stabilizing effect on the σ MOs than on the π MOs [18]. Accordingly, the direct substitution by fluorine of the hydrogen atom of TCNQ increases or decreases the acceptor strength by inductive or mesomeric effect, respectively.

The degree of conjugation between the electron-withdrawing substituent and the carbon atom to which the substituent is attached is different between these compounds. In F_2TCNQ both the fluorine and the

FIGURE 4 Schematic representation of the AO coefficients of MOs. Frontier orbitals of CF_3TCNQ (left) and F_2TCNQ (right) are compared. For CF_3TCNQ , see also Figure 3 and Table 5.

carbon atoms show significant $2p_z$ AO coefficients (>0.09) in 6 MOs out of 74. On the other hand, only 3 out of 83 MOs of CF_3TCNQ satisfy the same criterion; namely both the 2pz AO coefficients of C1 and C13 exceed 0.09 in absolute value. Furthermore, two of these show the bonding combination between C1 and C13. These results clearly indicate that the fluorine atoms and the π -system do not conjugate well in CF_3TCNQ , hence the strong electron affinity is ascribed to the inductive effect rather than the mesomeric one of the CF_3 group.

FORMATION OF SOLID CT COMPLEX OF CF3TCNQ

A variety of aromatic hydrocarbons, aromatic amines and diamines, TTF derivatives, organic and inorganic cations, etc. afforded solid CT complexes

of CF₃TCNQ. The high solubility of these CF₃TCNQ complexes in conventional organic solvents rendered the isolation of CT crystals rather difficult. This tendency stems from the highly soluble nature of the acceptor molecule, for example, $0.1\,\mathrm{g/ml}$ in MeCN and $0.02\,\mathrm{g/ml}$ in benzene. A variety of solid CT complexes concerned with the stoichiometry, structure, electric and magnetic properties, and optical property were prepared. For example, D:A being 1:1 (with alkali metals, TTF, TMTTF) and 1:2 (with 1,3,6,8-tetrakisdimethyaminopyrene) fully ionic insulators, 2:1 metals (with BEDO-TTF, EOET-TTF), 2:1 (with BEDT-TTF, BEDO-DBTTF) and 1:x (x < 1) (with BEDT-TTF, HMTTeF) highly conductive semiconductors and 1:1 neutral insulators (with pyrene, perylene) were obtained. Their crystal structures, and electrical, magnetic, and optical properties will be reported separately.

SUMMARY

In summary we have described the synthesis, physical properties and crystal structure of a TCNQ derivative with low symmetry, trifluoromethyl-TCNQ (CF₃TCNQ). CF₃TCNQ is very soluble in conventional organic solvents. It is a strong electron acceptor, comparable to 2,5-difluoro-TCNQ, and affords a variety of solid CT complexes. The dihydro-compound CF₃-H₂TCNQ is a strong Brönsted acid.

REFERENCES

- J. P. Ferraris, D. O. Cowan, V. V. Walatka, and J. H. Perlstein, J. Am. Chem. Soc., 95, 948–949 (1973).
- (a) T. Nakamura, G. Yunome, R. Azumi, M. Tanaka, H. Tachibana, M. Matsumoto,
 S. Horiuchi, H. Yamochi, and G. Saito, J. Chem. Phys., 98, 1882–1887 (1994).
 (b) K. Ogasawara, T. Ishiguro, S. Horiuchi, H. Yamochi, and G. Saito, Jpn. J. Appl. Phys.,
 35, L571–L573 (1996).
- [3] Y. Iwasa, N. Watanabe, T. Koda, and G. Saito, Phys. Rev., **B47**, 2920–2923 (1993).
- [4] S. Niwa, Synth. Metals, 18, 665–670 (1987).
- [5] (a) R. S. Potember, T. O. Poehler, D. O. Cowan, and A. N. Bloch, in *The Physics and Chemistry of Low Dimensional Solids*, ed. L. Alcacer (D. Reidel Pub. Co., Dordrecht, Holland, 1980, p. 419.
 - (b) Y. Iwasa, T. Koda, Y. Tokura, S. Koshihara, N. Iwasawa, and G. Saito, Appl. Phys. Lett., 55, 2111–2113 (1989).
- [6] T. Goto, T. Kondoh, K. Egawa, and K. Kubodera, J. Opt. Soc. Am. B, 6, 703-706 (1989).
- [7] (a) G. J. Ashwell, E. J. C. Dawnay, A. P. Kuczynski, M. Szablewski, I. M. Sandy, M. R. Bryce, A. M. Grainger, and M. Hasan, *J. Chem. Soc. Faraday Trans.*, 86, 1117–1121 (1990).
 (b) M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J.-L. Bredas, W. Wenseleers, and E. Goovaerts, *J. Am. Chem. Soc.*, 119, 3144–3154 (1997).
- [8] (a) R. M. Metzger and C. A. Panetta, in *Lower-Dimensional Systems and Molecular Electronics*, eds. R. M. Metzger, P. Day, and G. Papavassiliou (Plenum, New York, 1990) p. 611.

- (b) R. M. Metzger, B. Chen, H. Hophner, M. V. Lakshmikantham, D. Vuillaume, T. Kawai, X. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, J. W. Baldwin, C. Hosch, M. P. Cava, L. Brehmer, and G. J. Ashwell, *J. Am. Chem. Soc.*, **119**, 10455–10466 (1997).
- [9] H. Suzuki, A. Kondo, and T. Ogawa, Chem. Lett., 411 (1985).
- [10] M. Uno, K. Seto, M. Masuda, W. Ueda, and S. Takahashi, *Tetrahedron Lett.*, 26, 1553–1556 (1985).
- [11] (a) R. C. Wheland and E. L. Martin, *J. Org. Chem.*, **21**, 3101–3109 (1975).
 - (b) D. S. Acker and W. R. Hertler, J. Am. Chem. Soc., 84, 3370–3374 (1962).
- [12] (a) C. G. Swain and E. C. Lupton, Jr., J. Am. Chem. Soc., **90**, 4328–4337 (1968). Plots of the redox potentials vs. $\Sigma(\sigma_{\rm m}+\sigma_{\rm p})/2$ (or $\Sigma\sigma_{\rm p}$) for (MeO)₂TCNQ and (EtO)₂TCNQ deviate considerably from the line which has been experimentally observed for many other TCNQs. The best fit was obtained by using $\Sigma\sigma_{\rm p}$ for (MeO)₂TCNQ and (EtO)₂TCNQ while $\Sigma(\sigma_{\rm m}+\sigma_{\rm p})/2$ for other TCNQs in this work.
 - (b) R. C. Wheland and J. L. Gillson, J. Am. Chem. Soc., 98, 3916–3925 (1976).
 - (c) L. Bucsis and H. Kiesele, Acta Chim. (Budapest), 93, 141-148 (1997).
 - (d) G. Saito and J. P. Ferraris, J. C. S., Chem. Commun., 1027 (1979).
- [13] E. C. M. Chen and W. E. Wentworth, Mol. Cryst. Liq. Cryst., 171, 271–285 (1989).
- [14] T. Senga, K. Kamoshida, L. A. Kushch, G. Saito, T. Inamoto, and I. Ono, *Mol. Cryst. Liq. Cryst.*, 296, 97–143 (1997).
- [15] G. Saito, T. Teramoto, A. Otsuka, Y. Sugita, T. Ban, M. Kusunoki, and K. Sakaguchi, Synth. Metals, 64, 359–368 (1994).
- [16] (a) T. Akutagawa and G. Saito, Bull. Chem. Soc. Jpn., 68, 1753–1773 (1995).
 (b) T. Akutagawa, G. Saito, M. Kusunoki, and K. Sakaguchi, Bull. Chem. Soc. Jpn., 69, 2487–2511 (1996).
- [17] T. J. Emge, M. Maxfield, D. O. Cowan, and T. J. Kistenmacher, Mol. Cryst. Liq. Cryst., 65, 161–178 (1981).
- [18] C. R. Brudndle, M. B. Robin, N. A. Kuebler, and H. Basch, J. Am. Chem. Soc., 94, 1451–1465 (1972).